Классификация вакцин

Некоторые критерии эффективных вакцин

Безопасность

Вакцины не должны быть причиной заболевания или смерти

Протективность

Вакцины должны защищать против заболевания, вызываемого "диким" штаммом патогена

Поддержание протективного иммунитета

Защитный эффект должен сохраняться в течение нескольких лет

Индукция нейтрализующих антител

Нейтрализующие антитела необходимы для предотвращения инфицирования таких клеток

Индукция протективных Т-клеток

Патогены, размножающиеся внутриклеточно, более эффективно контролируются с помощью Т-клеточно-опосредованного иммунитета

Практические соображения

Относительно низкая цена вакцины, легкость применения, широкий эффект

Другой вопрос, который следует иметь ввиду при реализации любых программ массовых иммунизаций - это соотношение между безопасностью вакцин и их эффективностью. В программах иммунизации детей против инфекций имеется конфликт между интересом индивидуума (вакцина должна быть безопасна и эффективна) и интересом общества (вакцина должна вызывать достаточный протективный иммунитет). К сожалению, на сегодняшний день в большинстве случаев частота осложнений вакцинации тем выше, чем выше ее эффективность.

Новое поколение вакцин

Использование новых технологий позволило создать вакцины второй генерации.

Рассмотрим подробнее некоторые из них:

а) конъюгированные

Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов.

На примере вакцин против гемофилюс инфлюэнце (Hib-b) показана эффективность в снижении заболеваемости Hib-менингитами детей до 5-ти лет в США за период с 1989 по 1994 г.г. с 35 до 5 случаев.

б) субъединичные вакцины

Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии.

Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А.

Рекомбинантные субъединичные вакцины (например, против гепатита B) получают путем введения части генетического материала вируса гепатита B в клетки пекарских дрожжей. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.

в) рекомбинантные векторные вакцины

Вектор, или носитель, - это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ-инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B. В настоящее время широкого применения векторные вакцины не нашли.

Перейти на страницу: 1 2 3 4 5

Узнайте немного больше

Кожный покров
На границе соприкосновения с внешней средой у животных исторически образовался кожный покров-защита от различных воздействий. Кожа покрывает всё тело человека (кожа образует внешний покров организма, площадь которого у взрослого человека достигает 1,5-2 ...

Системная красная волчанка
Системная красная волчанка - системное аутоиммунное полиэтиологическое диффузное заболевание, характеризующееся дезорганнизацией соединительной ткани с преимущественным поражением микроциркуляторного сосудистого русла кожи и внутренних органов. ...