Материальный носитель

До начала 40-х годов главными "кандидатами" на роль материальных структур наследственности считались белки, макромолекулы большой молекулярной массы, состоящие из ограниченного разнообразия мономеров - аминокислот. Мономеры связаны между собой стандартными пептидными связями, а все разнообразие белков определяется составом и порядком боковых радикалов.

Сопоставимые данные для нуклеиновых кислот получили значительно позже, и это было связано с некоторыми драматическими обстоятельствами. Ключевую и противоречивую роль в выявлении мономеров, связей между ними, а также в формировании общих представлений о роли нуклеиновых кислот сыграл американский биохимик русского происхождения Ф.А.Левин.

В то же время Левин - автор так называемой "тетрануклеотидной гипотезы", основанной на ранних и достаточно неточных данных о молярных концентрациях оснований в нуклеиновых кислотах. В 1908 - 1909 гг. он и сотрудники показали, что нуклеиновые кислоты из тимуса теленка и дрожжей имеют равные молярные концентрации всех четырех нуклеотидов. Это дало основание предположить, что четыре разных нуклеотида связаны последовательно в стандартный тетрануклеотид, который многократно повторяется в структуре нуклеиновой кислоты. В более поздних вариантах гипотеза допускала высокую полимерность нуклеиновых кислот путем повторения тетрануклеотида, но, очевидно, исключала возможную комбинаторику нуклеотидов.

Таким образом, "стандартный тетрануклеотидный кирпич" (М ~ 1500) позволял строить только унылую, однообразную последовательность. В этом случае нуклеиновые кислоты не годились на роль материальной структуры генов. Однако большинство выдающихся биохимиков приняло эту гипотезу на веру, что надолго задержало развитие молекулярных представлений о генах.

Но в 40-е годы Э.Чаргафф и многие другие исследователи подвергли тетрануклеотидную гипотезу уничтожающей критике, а ее автор оказался "козлом отпущения" за свое заблуждение. По мнению историков науки Ф.Португала и Дж.Коэна, именно тетрануклеотидная гипотеза помешала Левину получить Нобелевскую премию за другие работы, которой он несомненно заслуживал. Умер Левин в 1940 г., когда уже началась война, и вопросы чистой науки оказались за пределами внимания большинства ученых.

Тем не менее к началу 40-х годов уже было ясно, что нуклеиновые кислоты (нынешние ДНК и РНК) могут быть высоко полимерны (М ~ 500 тыс. - 1 млн). В конце 40-х годов Чаргафф показал, что ДНК разного видового происхождения имеют разный состав нуклеотидов, а общая их эквимолярность не выполняется. Использовав новый метод хроматографии на бумаге, Чаргафф обнаружил, что между молярными концентрациями пуринов и пиримидинов имеются другие регулярные соотношения: A=T и G=C. И хотя он не объяснил эти свойства, стало совершенно ясно, что мономеры нуклеиновых кислот - не тетрануклеотиды, а четыре стандартных нуклеотида, у которых одинаковая сахаро-фосфатная часть, участвующая в образовании стандартных фосфо-диэфирных связей, и различные основания. Их комбинаторика и допускает огромное разнообразие вариантов.

Тем не менее, даже с учетом этих свойств, генетическую роль ДНК еще предстояло доказать. Это сделал в 1944 г. О.Эвери с сотрудниками. Еще в 1928 г. английский врач-инфекционист Ф.Гриффитс обнаружил, что пневмококки одного штамма (невирулентные) приобретают наследуемую вирулентность при контакте с лизатом инфекционных бактерий, убитых нагреванием (явление трансформации). Свыше 10 лет Эвери и сотрудники отрабатывали методы фракционирования лизата бактерий пока, наконец, не выделили активную фракцию, по физико-химическим свойствам совпадающую с ДНК. С одной стороны, это была сенсация, опровергавшая тетрануклеотидную гипотезу (ДНК обладала генетическими свойствами), с другой - интерпретация такой трансформации не была однозначной. ДНК могла быть либо генетическим материалом, который рекомбинирует с гомологичным геномом бактерии-реципиента, либо мутагеном, вызывающим мутации генов (тогда природа генов может быть другой), либо специфическим сигналом, переключающим функциональное состояние гена (этот вариант выявился позже). Дж.Ледерберг насчитал семь альтернативных гипотез о природе трансформации. Многие генетики не поняли фундаментального значения работы Эвери. Например, выдающийся цитолог А.Мирский, работавший в том же Рокфеллеровском институте, резко возражал против доказательств трансформирующей роли ДНК.

Тем не менее, значительная группа биохимиков, генетиков и физиков сосредоточилась на изучении химии, генетической роли и молекулярного строения ДНК. Дискуссии прекратились только после 1952 г., когда А.Херши и М.Чейз показали, что при заражении бактерии E.coli фагом T2 инфекционным началом является почти чистая ДНК фага 2. Эвери умер в 1955 г., не дождавшись своей Нобелевской премии, которой, несомненно, был достоин. В 1939 - 1940 гг. близкое открытие сделал С.М.Гершензон в Киеве, показав, что введение или скармливание дрозофиле чужеродной ДНК вызывает вспышку мутаций признаков крыла.

Перейти на страницу: 1 2 3 4 5 6

Узнайте немного больше

Туберкулез органа зрения
Туберкулез глаз относится к общим инфекционным заболеваниям бактериальной природы. Название болезни происходит от латинского tuberculum, что означает бугорок. ...

Механизм формирования наркомании и алкоголизма
Злоупотребление наркотиками и алкоголем, известное с древнейших времен, сейчас распространилось в размерах, тревожащих всю мировую общественность. Даже при сужении, с точки зрения наркологов, границ наркомании и алкоголизма до юридически приемлемых во многих странах о ...